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While cross-country skiers may dream
of a roaring fire in the middle of their
trek, our planet generally keeps its in-
ner heat to itself. Hot springs, geysers,
and lava flows are relatively rare on the
Earth’s surface. It’s not hard to figure
out why the hot stuff stays bottled up
in the planet’s interior, or how it occa-
sionally leaks out through cracks in the
Earth’s crust.

You may have a harder time explain-
ing where the heat comes from. In “Tak-
ing the Earth’s Temperature,” Alexey
Byalko explores this question, and along
the way he uncovers some interesting
facts about the Earth’s thermal history
and its present structure. In a compan-
ion piece, A. G. W. Cameron presents a
theory for the creation of the Earth’s
little sister—the Moon.

We hope our readers in the northern
climes have ample opportunity to engage
in winter sports and outdoor activities in
the coming months, whether or not they
enjoy the amenity depicted on our cover.
And we wish all our readers everywhere
a healthy and happy New Year!
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IN ARCHITECTURE, THE
epitome of elegance might be a
Greek temple. In fashion, a Chanel
suit. In mathematics, it’s a term ap-

plied to the best, shortest, most in-
spired (and inspirational) proofs.

“An elegant proof just hits you
between your eyes and fills your
heart with joy,” explains mathema-
tician Irving Kaplansky.

One of the most elegant math-
ematicians of all time was Carl
Friedrich Gauss. He lived in the pe-
riod following the rapid expansion
and development of mathematics
in the 18th century. However,
that century was not a period of
elegance, according to mathema-
tician Harold Edwards, who
studies the history of math. It
was Gauss in the 19th century
who collected and refined the
work done previously.

“He didn’t publish anything un-
til it was completely polished,”
says Edwards, a professor at New
York University.

Gauss frustrated his peers by not
publishing his proofs until they were
perfect, but he thought that a cathe-
dral is not a cathedral until the last
scaffolding is down and out of sight.
His motto was Pauca sed matura—
“Few, but ripe.”

Elegant proofs come from God, ac-
cording to the Hungarian mathema-
tician Paul Erdo″s. His theory is that
God has a book containing all the

best proofs, and sometimes
he lets a mortal g l i m p s e
one of them. “You don’t
even need to believe in
God, you just need to be-
lieve in the
book,” he
said. “You
feel: ‘How
foolish
that

I didn’t think of it myself.’ ”
But, as in other things, elegance

is sometimes simply a matter of
taste.

“I like these combinatorial things
that my colleagues think are a

waste of time,” laments
John Conway,
professor at

Princeton Uni-
versity.

However, most math-
ematicians agree on the ba-
sics:

1. Any proof that in-
volves computer number-

crunching is not elegant.
(The proof of the Four Color

Theorem comes to mind.)
2. Elegant proofs are easily

understandable.
The classic example of el-

egance is Euclid’s short
proof that there are an infi-

nite number of prime numbers.
A prime number is one that can be
evenly divided only by itself and the
number 1. Nonprimes are divisible
by primes and so are called compos-
ite numbers, since they are com-
posed of primes.

“It’s 2,300 years old and there’s
no better proof,” says Kaplansky,
director emeritus of the UC–Berkeley
Mathematical Science Research In-
stitute.

Euclid’s proof is short and bypasses
the fact that there is no formula for

by Julia Angwin

Mathematicians say: “I know it when I see it”

What is elegance?
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“points” to a subsequence such as is
required in the problem.

Problem 2. Generalize this result
to a sequence of n2 + 1 different
numbers.

Problem 3. Provide a counter-
example to show that if the 101
numbers in the sequence are not dis-
tinct, then the result is false.

Don’t worry if your proofs aren’t
elegant—most proofs aren’t. But be
sure to keep your eye peeled for an
unexpected glimpse of God’s book.

As John Conway put it: “Some-
times mathematics is like wander-
ing around a strange town, wander-
ing around some streets and
suddenly you turn the corner and
the view changes—you see the
beauty of the whole thing.”

determining prime numbers. With-
out his proof, one could flounder
around trying larger and larger primes
without ever determining an upper
limit. Euclid simply assumed that
there is a final prime number and
proves that this assumption leads to
a contradiction. Here’s the proof.

1. Call the highest prime number Q.
2. Now multiply Q by all the

primes leading up to it: 2 × 3 × 5 × 7
× … × Q.

3. Let P equal that product plus 1:
(2 × 3 × 5 × 7 × … × Q) + 1 = P.

4. Then P is not divisible by any
of the numbers 2, 3, 5, 7, …, Q, be-
cause each divisor would leave a re-
mainder of 1.

5. But P must be divisible by
some prime because it is a compos-
ite number.

6. But that prime must be larger
than Q, because we have used up all
the smaller primes. This contradicts
step 1.

7. So the assumption must have
been false—there must be an infi-
nite number of primes.

Problem 1. Note that Euclid does
not claim that his number P is a
prime. Indeed, show that 2 × 3 × 5 ×
7 × 11 × 13 + 1 is divisible by 59. Can
you find a prime divisor of 2 × 3 × 5
× 7 × 11 × 13 × 17 + 1?

Part of the charm of Euclid’s proof
lies in the fact that the result is in-
credibly useful. Aside from their role
in pure number theory, large prime
numbers are used to make and break
government codes.

“If the thing you’re proving is
useful or powerful and yet your
proof is simple, that is a great thing,”
says Conway. A short, concise proof
of a less important theorem might
not be called elegant, he says. It
would simply be cute or interesting.

But the most important quality of
an elegant proof is that it makes you
think, “Aha! How silly that I didn’t
think of that.”

For example, consider a problem
posed by mathematician Ron Gra-
ham. Consider a sequence of 101
distinct numbers arranged in any
order you like. You can find a sub-
sequence of 11 increasing or decreas-
ing numbers in that set, he says.

First, to get a sense of it, think of
the first 100 natural numbers ar-
ranged as follows:

91, 92, 93, …, 100, 81, 82, 83, …, 90,
71, 72, 73, …, 80, …, 1, 2, 3, …, 10.

This is a sequence of 100 numbers.
We can pick one number from each
“decade” to create a subsequence of
10 decreasing numbers, such as 95,
85, 75, 65, 55, 45, 35, 25, 15, 5. Or
you can pick 10 increasing numbers.
But it’s impossible to find an in-
creasing or decreasing subsequence
of 11 numbers.

So intuitively you can believe
that with 101 numbers there will be
such a sequence of 11 numbers. But
how can we prove it? The unin-
spired approach would be to check
all cases. But we are going to use a
cute—ahem, elegant—trick.

We assign to each of the 101 num-
bers A1, A2, …, Ak, …, A101 a pair of
integers (ik, jk) as follows. Let ik be
the length of the longest increasing
subsequence ending in Ak. For ex-
ample, if the sequence is <11, 3, 5, 1,
7, 2, …> and k = 6, then the largest
increasing sequence ending in Ak = 2
is <1, 2> and i6 = 2.

Similarly, let jk be the length of the
longest decreasing sequence ending
in Ak. For our example, if k = 6, the
longest decreasing sequence ending
in A6 – 2 could be either <11, 5, 2>
or <11, 3, 2> or <11, 7, 2>. In any of
these cases, i6 = 3. So for k = 6, we
have Ak = (2, 3).

Now we can prove that no two
pairs of these integers can be the
same. For assume the contrary: sup-
pose that (im, jm) = (in, jn) for some
subscripts m and n, with n > m.
Now if An > Am, then surely in > im,
because otherwise you could just
append An to the end of an increas-
ing sequence measured by im. Simi-
larly, if An < Am, then jn > jm.

Now suppose all of the values for
ik and jk are between 1 and 10. Then
you would have 100 pairs. But you
have 101 pairs, so the pigeonhole
principle1 guarantees that one of the
pairs must contain an 11. This pair

1See “Pigeons in Every Pigeonhole”
in the January 1990 issue of
Quantum.—Ed.

Public Service Ad

Public Service Ad
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STICKING
POINTS

FROM MY TEACHING EXPER-
ience (both in Russia and the
United States) I strongly believe
that many students have a hard

time understanding the idea of vector
physical quantities. In particular, the
concept of components is especially
hard for them. The worst of it is,
many of these students sagely learn
how to “follow the procedure” and
are able to solve “standard” problems
involving the idea of vector compo-
nents without really understanding
them. It’s funny—I have talked about
this topic in my school with stu-
dents taking Conceptual Physics,
Intro Physics, and
AP Physics C,
and they
all ask
the same
n a ï v e
questions!
(Although
the AP students
are less aggressive—
they rely on calculus . . .)

To prevent situations in
which the teacher and the
student are both
convinced that
the student
actually
does

understand the idea while in fact he
or she does not, I have used unusual,
“tricky” problems that, as far as the

math is concerned, are accessible
even for an introductory high school
physics course. At the same time
they are so rich conceptually that
even college students find many of
them tough. If you’re able to solve
these problems, I can be sure (more or
less) that you really do know how to
play the game. In this article I’ll offer
some examples that are sure to dis-

appoint a “calculus person.”
Problem 1. It’s raining

(there’s no wind, though). Will
a bucket be filled with water
more quickly if it’s resting
on the ground or if it’s

placed on a hori-
zontally moving
platform?

The question is
purely qualitative and

yet can be solved easily
with a “quantitative” tool

like components. Since only
the vertical component of the

velocity of the raindrops mat-
ters here, the time needed to fill

the bucket doesn’t depend on the
bucket’s horizontal speed and will
be the same in both cases. This
problem is relatively easy but can
(and did!) provoke a nice discussion.

The next problem is also not that
hard but looks weird to many students.

Important components
of learning components

by Boris Korsunsky

You use vectors—but do you really understand them?
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Problem 2. A person is pulling a boat
with a rope as shown in figure 1. At a
certain moment the angle between the

rope and the boat’s
velocity is θ. (You
may say: “Well,
first of all, that’s im-
possible!” Is it?)
The speed of the
boat is v. Find the
speed u at which
the person must be
pulling the rope at
this moment.

This problem also makes use of
the idea of components. The answer
is u = v cos θ. If you caught the drift
of the problem, you would say that
the component of the boat’s veloc-
ity along the rope equals the veloc-
ity of the rope (we assume the rope
doesn’t stretch—otherwise the prob-
lem would be pointless). Unfortu-
nately, from my experience many
students are totally convinced that
in order to be able to deal with com-
ponents in a particular problem, you
must have two perpendicular coor-
dinate axes. This problem clearly
says, “No, you don’t.”

The next problem looks different,
but it’s actually quite similar to
problem 2.

Problem 3. A bar propped against
a wall begins to slide down (fig. 2).

The velocity of the bottom end of
the bar is given. Find the velocities
of the top end of the bar and the
middle of the bar graphically.

The way to solve this problem
(which is admittedly a bit harder) is
shown in figure 3. Since the bar is a
rigid body, the components of the

velocities of all points of the bar in
the direction along the bar are the
same. (Otherwise the distances be-
tween them would change.) If we
know the component of a vector
along a certain direction and the ac-
tual direction of the vector, we can
easily find the vector itself. The di-
rection of the velocity of the top end
is obvious. How about the middle?
Geometry tells us that as the bar
slides down, the distance OC re-
mains constant. This means that the
midpoint C moves along an arc, and
its velocity at all times is perpen-
dicular to OC. Now we can “con-
struct” the corresponding vector, as
shown in figure 3.

The next problem is really tricky
and I’m sure you’ll enjoy it. (That is,
unless you’re too good at math,
which might cause problems!)

Problem 4. Four ninja turtles are
ready for battle, standing at points A,
B, C, D forming a square, as shown in
figure 4. At the same moment they
start to chase one another: the veloc-
ity of turtle A (sorry—I can never
manage to remember their wonderful
names!) is directed at all times toward
turtle B, whose velocity, in turn, is

directed toward turtle C, who is chas-
ing turtle D in the same manner. And
turtle D is chasing turtle A, of course.
They all have the same speeds, and
it’s pretty obvious that, moving in
curved lines, they eventually come
together at the center of the initial
square ABCD. How long will it take
if the side of the initial square is L and
the speed of each ninja turtle is v?
(Bonus question: What’s the point of
such a contest?)

Isn’t this a great problem? We cer-
tainly can’t analyze these beyond-the-
bounds-of-simple-math curves. Well,
if you can, too bad—you’ll miss all
the fun! And the fun is to exploit the
symmetry of the arrangement. At all
times the turtles will form a square
that decreases in size and simulta-
neously rotates. What a sophisticated
motion! But the center of the square
obviously does not move. And this is
exactly where they meet—the point
that interests us.

Now the components come into
play. Although the direction of the
velocity of each turtle changes con-
tinually, the component of the veloc-
ity of each turtle directed toward the
center makes the same angle (45°) at
all times with the velocity itself and,
therefore, retains its magnitude,
which is v( 2 /2). Now we get the
answer right away. Isn’t that great?
(The answer is indeed L/v.)

Of course, components come in
handy when we’re faced with prob-
lems involving Newton’s laws of
motion. Here are a couple of nice
examples.

Problem 5. The system shown in
figure 5 is allowed to move freely
from the state of rest with no fric-
tion. What will happen first: will
block 1 hit the pulley, or will block
2 hit the wall?

Figure 2

A

O

C

B
vB

vC

vx

vA

vx

vx

Figure 3

Figure 4

A B

D C

Figure 5

2
m m
1

L L

θ
v

u

Figure 1
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What can we do here? The direc-
tion and the magnitude of the force
exerted on block 2 change continu-
ously! Ready for some horrible inte-
grating? Guess again!

This is one not-so-easy olympiad-
style problem whose solution is
amazingly short. Just consider the
horizontal components. The force
of tension of the string (which is cer-
tainly the same for both blocks) is
the only one that contributes to the
horizontal acceleration of both
blocks. Of course, the horizontal
component of this force is greater
for block 1 at all times! Since both
blocks have the same distance to go,
block 1 will win the race. (The hori-
zontal component of its velocity is
at all times greater that that of
block 2.)

The next (and last) problem
brings in the idea of torques as well
as components. (There’s your hint!)

Problem 6. A uniform bar leans
against a wall as shown in figure 6.

Given the fact that the wall is fric-
tionless and given the vector repre-
senting the force of gravity acting
on the bar, find the vector corre-
sponding to the force of friction be-
tween the bar and the floor graphi-
cally. (Can the floor be frictionless,
too?)

The solution is shown in figure 7.
Two important ideas are involved.
First, the net torque with respect to
any point must be zero. Second,
since the normal force of the wall
and the force of gravity both “pass
through” point A, the reactive force
of the floor must also pass through
the same point!

Now that we know the direction
of this force, it’s a good time to re-
call the fact that the vertical compo-
nent of the floor’s reactive force Ffl
equals the force of gravity (which en-
ables us to “construct” the vector
corresponding to the floor’s force).
With this vector available to us, we
can easily plot its horizontal compo-
nent—which happens to be the un-
known force of friction!

Tricky problems are a lot of fun
and usually help us really under-
stand a concept. I’ll leave you with
a few exercises. I’m sure you’ll
have a good time with them—
eventually!

Exercises
1. A group of

ants is pulling
a small stick.
At a certain
moment the
velocities of
the ends A and
B make the
angles α and β,
respectively,
with the stick
(fig. 8). The
speed of end A
is also given.
Find the speed
of end B.

2. When the ants are done with the
stick, they keep working hard. Now
they are pulling a square piece of card-
board ABCD. At a certain moment
it’s known that the velocity of A
equals v and is directed along AC.
The velocity of C at this moment is

directed along CD (fig. 9). Find the ve-
locities of B, C, and D.

3. When the ants finish this bit of
work, they take a break. (You’re
welcome to
do the same!)
After their si-
esta they pull
a cardboard
e q u i l a t e r a l
triangle ABC
(fig. 10). It’s
known that at
a certain moment the velocity of A
is v and is directed along AB,
whereas the velocity of C is directed
along BC. Find the velocities of B
and C.

4. Why is it easier to pull a nail
out of a board if you turn it continu-
ously while pulling? (Hint: consider
the component of the force of fric-
tion, which acts against the force
you exert in pulling.)

Boris Korsunsky teaches at Northfield
Mount Hermon School in Northfield,
Massachusetts.

Figure 8

α

A
vA

β

B

A

B C

D

Figure 9

A

B

C

v

Figure 10
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INNOVATORS

1On page 17 of Dynamical Theories
of Brownian Motion (Princeton
University Press, 1967), Edward
Nelson remarks, “It is sad to realize
that despite all the hard work which
had gone into the study of Brownian
motion, Einstein was unaware of the
existence of the phenomenon. He
predicted it on theoretical grounds and
formulated a correct quantitative
theory of it.” He quotes Einstein as
saying, “My major aim . . . was to find
facts which would guarantee as much
as possible the existence of atoms of
definite finite size.”

IN 1919 WIENER’S NOMADIC
existence ended at last. He worked
for a few months as a reporter for
the Boston Herald and was fired.

Wiener’s appointment was a gamble
that paid off for both parties. Wiener
remained at MIT until his retirement
in 1960, and during that period he not
only put MIT on the map mathemati-
cally, he also played a profound part

in the creation of the culture to which
MIT owes much of its present fame
and prestige.

At MIT the prodigy bloomed.
Perhaps his emergence was an ex-
pression of his having at last found
in mathematics his true calling;
maybe it was the sense of security
and self-esteem that came with a
steady job; or possibly it was simply
that, at age 24, the ex-prodigy had
caught up with himself and was ready
to become a genius. In any case, dur-
ing his first dozen years at MIT,
Wiener made his most astounding
contributions to pure mathematics:
he constructed Brownian motion,
laid a new foundation for potential

theory, and invented his generalized
harmonic analysis.

The history of Brownian motion
has taken some interesting twists
and turns. The name honors the
nineteenth-century botanist Robert

Brown, who reported that
pollen and many types of
inorganic particles sus-
pended in water perform
a strange St. Vitus dance.
Brown refuted some fac-
ile explanations of this
motion, although debate
still raged over whether
the movement was of
biological origin. It was
Einstein’s famous 1905
article on the subject that
catapulted Brownian
motion into twentieth-
century physics. Einstein
showed that a molecular
(as opposed to a con-
tinuum) model of water

predicts the existence of the phenom-
enon that Brown observed. Interest-
ingly, he predicted Brownian motion
before learning about Brown’s obser-
vations.1

Finally, his father’s friend Professor
Osgood at Harvard interceded and
obtained for Norbert an
instructorship at MIT.
In 1919, this was not a
notable appointment.
At the time, the math-
ematics department at
MIT was purely a ser-
vice department, valued
only for its contribution
to the engineering cur-
riculum. Thus it is re-
markable that MIT ac-
commodated young
Wiener, a man whose
past experience did not
recommend him as a
teacher. In addition, even
if MIT had sought prow-
ess in mathematical re-
search, Norbert Wiener in 1919
would not have been a strong candi-
date. He had published fifteen undis-
tinguished articles on logic and noth-
ing at all in traditional mathematics.
But, whether MIT’s decision to hire
Wiener was guided by phenomenal
insider information or was just a for-
tuitous product of the “old boy net-
work,” there can be no doubt that

The legacy of Norbert Wiener
Part II: Brownian motion and beyond

Part I appeared in the November/
December 1994 issue. Reprinted from
the program booklet for The Legacy of
Norbert Wiener: A Centennial
Symposium in Honor of the 100th
Anniversary of Norbert Wiener’s
Birth, October 8–14, 1994, prepared by
the MIT Department of Mathematics
with the assistance of Tony Rothman.

Norbert Wiener in 1926.
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Because it is virtually impossible
to solve Newton’s equations of mo-
tion for anything like the number of
particles in a drop of water, Einstein
adopted a statistical approach and
showed that the evolution of the
distribution of Brownian particles is
governed by the heat equation. That
is, the density of particles at each
point follows the same physical law
as the temperature at each point.
Actually, from the physical point of
view, this description of Einstein’s
paper throws out the baby with the
wash. A physicist cannot talk about
a one-size-fits-all heat equation any
more than a one-size-fits-all wave
equation; there are all-important
constants that enter any physical
equation. For the wave equation, the
essential physical constant is the
speed of light. In the case of the heat
equation, there is the diffusion con-
stant, and it was Einstein’s formula
for the diffusion constant that won
his 1905 article its place in history.
Namely, Einstein expressed the diffu-
sion constant as the ratio of several
physical quantities, one of which was
Avogadro’s number.2 It turns out
that, with the exception of Avoga-
dro’s number, all these quantities,
including the diffusion constant it-
self, were either known or measur-
able experimentally. Thus, his for-
mula led to the first accurate
determination of Avogadro’s number.

If one ignores physics and ana-
lyzes Einstein’s model from a purely
mathematical standpoint, what
Einstein was saying is summarized
by the following three assertions
about the way in which Brownian
particles move.

1. Brownian particles travel in
such a way that the behavior over
two different time intervals is inde-
pendent. Thus, there is no way to
predict future behavior from past
behavior.

2. The particle is equally likely
to move in any direction, and the

distance traversed by a Brownian
particle during a time interval is on
average proportional to the square
root of the time.

3. The trajectories of Brownian
particles are continuous.

With reasonably standard results
from the modern theory of probability,
one can deduce from Einstein’s three
assumptions the conclusion that the
distribution of Brownian particles
evolves according to a heat equation.
(The all-important diffusion constant
is determined by the proportionality
constant in assertion 2.) Of course, in
1905, a mathematically satisfactory
formulation of probability theory had
yet to be given. Thus, Einstein’s deriva-
tion was, mathematically speaking,
rather primitive. Moreover, implicit in
his model was an important math-
ematical challenge: the verification
that one can construct a distribution
on the space of trajectories so that as-
sertions 1, 2, and 3 are satisfied.3

At the turn of the century, the
French school of analysis was hard
at work creating the subject that we
now call measure theory (that is,
the theory by which we assign vol-
ume to sets).4 The French school,

especially E. Borel and H. Lebesgue,
freed measure theory from its clas-
sical origins and made it possible to
consider the problem of assigning
probabilities to subsets of trajecto-
ries. However, in spite of their many
magnificent achievements, neither
Borel, Lebesgue, nor their disciples
like P. Lévy, S. Banach, M. Fréchet,
and A. N. Kolmogorov had been able
to mathematically rationalize Ein-
stein’s model of Brownian motion.
All of them were well aware of the
essential problem, but none of them
had been able to carry out the re-
quired construction. This was the
problem that Wiener solved.

In hindsight, Wiener’s strategy
looks a little naïve. In particular, he
completely circumvented the issues
on which more experienced math-
ematicians had foundered. In a mar-
velous demonstration of the power of
optimism, he supposed that the de-
sired assignment of probabilities
could be made and asked how this
assignment would look in a cleverly
chosen coordinate system. He then
turned the problem around and
showed that the coordinate descrip-
tion leads to the existence of the de-
sired assignment. (This general line
of reasoning is familiar to anyone
who has ever solved a problem by
saying “let x be the solution” and
then found x as a consequence of the
properties that it must have.)
Wiener’s Gordian-knot solution to
the problem enhances its appeal, and
the assignment of probabilities at
which Wiener arrived in “Differential
Space” has, ever since, borne his
name. It is called Wiener measure.

The importance of Wiener mea-
sure is hard to exaggerate. It repre-
sents what we now dutifully call a
paradigm. For one thing, its very

2Avogadro’s number is a universal
constant measuring the number of
molecules in a gas per unit volume at
a fixed pressure. It can also be defined
as the number of atoms in one gram of
hydrogen.

student. Of course, that theory had
been tightened up by Cauchy,
Riemann, and others, but it was still
seriously deficient. For example, one
could not show that the whole is the
sum of its parts unless there were at
most finitely many parts. In addition,
although Riemann’s theory served
quite well in finite dimensional
contexts, there was no theory at all for
infinite dimensional spaces, like the
space of all Brownian trajectories.

3Actually, Einstein’s 1905 article
was not the first one in which this
problem appears. Five years earlier,
H. Poincaré’s brilliant student
L. Bachelier came to the conclusion
that the fluctuation of prices on the
Paris Bourse follow trajectories whose
distribution satisfies assertions 1, 2,
and 3. It was not until the 1970s that
the economics literature on this
subject converged with the
engineering and mathematical
literature. The result is a much more
sophisticated way to calculate risk in
large financial markets, which has
become an indispensable tool for loan,
investment, and trading companies.
Finally, one should remark that
Bachelier, as distinguished from
Einstein, really addressed the problem
of computing the probability of
nontrivial events that can be
formulated only in the path–space
context. The first physicist to address
such problems was M. Smoluchowski,
who used an approximation scheme
based on random walks.

4Prior to their efforts, the only
available theory was basically the one
introduced by Archimedes,
rediscovered by Fermat and Newton,
and now forced on every calculus
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existence opened a floodgate and led
Lévy, Kolmogorov, and others to cre-
ate the theory of stochastic processes,
thereby ushering in the modern
theory of probability. In addition,
Wiener measure is, in a sense that can
be made very precise, as universal as
the standard Gaussian (or normal)
distribution on the real line: it is the
distribution that arises whenever one
carries out a central limit scaling pro-
cedure on path–space valued random
variables.5 This is the underlying rea-
son why Wiener measure arises as
soon as one is studying a phenom-
enon that displays the properties 1, 2,
and 3. It is also the reason why, again
and again, Wiener measure comes up
in models of situations in which one
is observing the net effect of a huge
number of tiny contributions from
mutually independent sources—as in
the motion of a pollen particle, the
Dow Jones average, or, as Wiener
himself observed, the distortions in a
signal transmitted over a noisy line.

Although his construction of
Brownian motion was Wiener’s pre-
miere achievement during the pe-
riod, it was not his only one. In a
sequence of articles from 1923
through 1925, Wiener also looked at
a fundamental problem in the
theory of electrostatics. The prob-
lem was to decide what shape elec-
trical conductor can carry a fixed
charge. Zaremba had shown that
certain conductors in the shape of
spikes are unable to carry charge—
they discharge spontaneously at the
tip. (The reverse of this phenom-
enon is what makes a lightning rod
work.) On the other hand, Zaremba
had shown that cone-shaped con-
ductors do hold their charge. In the
mathematical model spontaneous
discharge corresponds to an abrupt
change—a discontinuity—in the
voltage across the interface between
the conductor and the surrounding
medium. The electrical field has a
constant voltage on the conductor,
and the equilibrium is stable (no

sparks) if the voltage is continuous
across the interface.

Wiener described all shapes for
which instability occurs and estab-
lished a new framework for the en-
tire subject of potential theory. In
sharp contrast with many models in
mathematical physics, he showed
that the voltage in equilibrium is
well defined mathematically, re-
gardless of whether the conductor is
stable or not. He then formulated a
wholly original test, now known as
the Wiener criterion, that deter-
mines at which points the voltage is
discontinuous. A key step in
Wiener’s approach was to extend to
arbitrary shapes a classical notion
known as electrostatic capacity.6 He
used a procedure that is analogous
to, but more intricate than, the one
invented by Lebesgue when he as-
signed a volume to regions for which
there was no classical notion of vol-
ume. Indeed, Wiener’s capacity is
closely related to, but more subtle
than, the measures used for fractals.7

Another topic that Wiener inves-
tigated during this period was what
we now call distribution theory or
the theory of generalized functions.
Not long after Wiener arrived at
MIT, Professor Jackson and other
members of the electrical engineer-
ing department at MIT asked
Wiener to develop a proper founda-
tion for the Heaviside calculus—a
calculus for solving differential
equations by means of Fourier and
Laplace transforms. Heaviside’s cal-
culus transforms a differential equa-
tion into an equation involving
multiplication, as in Ax = B. To solve
for x, we simply divide: x = B/A. The

difficulty is that this easy formula for
the solution then has to be trans-
formed back into a meaningful state-
ment about the solution to the origi-
nal differential equation. This
involves making sense of the inverse
of the Fourier–Laplace  transform.
Wiener undertook the description of
how multiplication and division cor-
respond to the operations of differen-
tiation and integration. Laurent
Schwartz, the father of the theory of
distributions, acknowledges that
Wiener’s treatment in 1926  antici-
pated all others by many years.

Just as the physics of Brownian
motion had stimulated Wiener to pro-
found new mathematics, so the prac-
tical problem of processing electrical
signals led him to a deep extension of
classical Fourier analysis. Fourier
analysis consists of decomposing a
periodic signal into a sum of pure sine
waves. The fundamental formula of
Fourier analysis—the Parseval for-
mula—says that the total energy of
the signal in each period is the sum of
the energies of its pure waves. The
collection of frequencies at which
these amplitudes occur is known as
the spectrum of the signal, and these
come from a discrete list of values—
the harmonics of a vibrating string.
There is a similar fundamental for-
mula due to Plancherel for the de-
composition of nonperiodic waves
that measures the total energy over
all time. The spectrum of the signal
is spread over the continuum of fre-
quencies, and the formula measures
the amount of energy of the signal
concentrated in a given band of fre-
quencies. The problem is that the sig-
nals that occur in practice in electri-
cal systems do not fit into the frame
of either of these theories. The signals
are not periodic and the spectrum is
not confined to a special list, so that
Fourier series are inadequate. On the
other hand, the total energy over an
infinite time period is infinite, so that
Plancherel’s theory does not apply.
Wiener overcame this difficulty with
what he named generalized harmonic
analysis. Wiener took as his starting
place certain autocorrelation num-
bers, which compare the signal to the
same signal with a time delay. These

5A full understanding of this
universality came only in the 1950s
and was provided by P. Lévy, R. H.
Cameron, M. Donsker, P. Erdo″s,
M. Kac, W. T. Martin, and I. E. Segal.

6The electrostatic capacity of a
conductor can be defined as the total
charge carried by the conductor in
equilibrium when the voltage
difference between the conductor and
its surroundings is fixed at, say, one
hundred volts.

7There is an amusing irony
associated with Wiener’s investigations
into potential theory. Namely, as
S. Kakutani discovered in the early
1940s, potential theory is related to
Brownian motion in deep and
wonderful ways. Wiener completely
missed this beautiful and useful
connection with his previous work.



1 0 J A N U A R Y / F E B R U A R Y  1 9 9 5

were precisely what could be mea-
sured in practice. Then, instead of
dealing with total energy, Wiener
considered the average energy of the
signal over a long time interval. His
theory was flexible enough to encom-
pass both periodic signals and signals
composed of a continuum of frequen-
cies, such as “white noise.”

One of the key ingredients in
Wiener’s generalized harmonic analy-
sis was a new method to calculate
limits of averages. His first step was
to rephrase the problem so that it be-
came one of determining when two
different weighted averages are very
close to each other. The recast prob-
lem fit into the general framework of
so-called Tauberian theory—a theory
to which Hardy and Littlewood had
made several contributions. But in-
stead of using some refinement of
the techniques of his teachers,
Wiener introduced a new approach
that not only solved his own prob-
lem but revealed the fundamental
mechanism of all previous problems

of this type.8 In his monograph on
the subject, Wiener illustrates his
ideas with an elegant proof of the
Prime Number Theorem, one of the
most beautiful applications of analy-
sis to number theory.

With the publication of his work
on generalized harmonic analysis and
Tauberian theorems, Wiener’s repu-
tation was at last established. In 1932
he was promoted to Full Professor at
MIT with a salary of $6,000. The fol-
lowing year, he was elected to the
National Academy of Sciences, and
he won the Bôcher Prize, a prize given
every five years for the best work in
analysis in the United States.

The major works outlined above
by no means exhaust Wiener’s intel-
lectual activity. Throughout the
1930s he continued to expand on
harmonic analysis, with the same

engineering applications clearly in
view. He wrote an influential book
with R. E. A. C. Paley and a seminal
paper on integral equations with
E. Hopf. He made excursions into
quantum mechanics with Max Born
and sorties into five-dimensional rela-
tivity (Kaluza–Klein theory) with
Dirk Struik. In the late 1930s Wiener
made a significant contribution to the
mathematical foundations of statisti-
cal mechanics by extending G. D.
Birkhoff’s 1931 ergodic theorem. His
1938 paper “The Homogeneous
Chaos,” which undertakes to fathom
nonlinear random phenomena, has
descendants in constructive quantum
field theory, under the name “Wick
ordering.”

The concluding segment of this cen-
tenary essay will cover Wiener’s work on
the control of anti-aircraft fire during
World War II and his most famous
legacy—cybernetics.

TO BE CONTINUED
IN THE NEXT ISSUE

8Wiener’s work led to I. M.
Gelfand’s far-reaching formulation of a
notion of spectrum that can be used to
analyze multiplication and division in
any algebraic system.
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